Skip to content

Generative AI Project Template

python Debian macOS

Hugging Face OpenAI Microsoft Azure

streamlit FastAPI

Style: Ruff MkDocs mkdocs-material Docker GitLab CI GitHub Actions

Template for a new AI Cloud project.

Click on Use this template to start your own project!

This project is a generative ai template. It contains the following features: LLMs, information extraction, chat, rag & evaluation. It uses LLMs(local or cloud),streamlit (with and without fastapi) & Promptfoo as an evaluation and redteam framework for your AI system.

Test embeddings Test chat

Engineering tools:

  • [x] Use UV to manage packages
  • [x] pre-commit hooks: use ruff to ensure the code quality & detect-secrets to scan the secrets in the code.
  • [x] Logging using loguru (with colors)
  • [x] Pytest for unit tests
  • [x] Dockerized project (Dockerfile & docker-compose).
  • [x] Streamlit (frontend) & FastAPI (backend)
  • [x] Make commands to handle everything for you: install, run, test

AI tools:

  • [x] LLM running locally with Ollama or in the cloud with any LLM provider (LiteLLM)
  • [x] Information extraction and Question answering from documents
  • [x] Chat to test the AI system
  • [x] Efficient async code using asyncio.
  • [x] AI Evaluation framework: using Promptfoo, Ragas & more...

CI/CD & Maintenance tools:

  • [x] CI/CD pipelines: .github/workflows for GitHub (Testing the AI system, local models with Ollama and the dockerized app)
  • [x] Local CI/CD pipelines: GitHub Actions using github act
  • [x] GitHub Actions for deploying to GitHub Pages with mkdocs gh-deploy
  • [x] Dependabot .github/dependabot.yml for automatic dependency and security updates

Documentation tools:

  • [x] Wiki creation and setup of documentation website using Mkdocs
  • [x] GitHub Pages deployment using mkdocs gh-deploy plugin

Upcoming features: - [ ] add RAG again - [ ] optimize caching in CI/CD - [ ][Pull requests templates](https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository) - [ ] Additional MLOps templates: https://github.com/fmind/mlops-python-package - [ ] Add MLFlow - [ ] add Langfuse

1. Getting started

This project contains two parts:

  • The AI app: contains an AI system (local or cloud), a frontend (streamlit), with an optional backend(fastapi).
  • (optional)The Evaluation Tool: The evaluation tool is used to evaluate the performance and safety of the AI system. It uses promptfoo & RAGAS, Python 3.11 and NVM are needed, but no need to install them by yourself since the project will handle that for you.

The following files are used in the contribution pipeline:

  • .env.example: example of the .env file.
  • .env : contains the environment variables used by the app.
  • Makefile: contains the commands to run the app locally.
  • Dockerfile: the dockerfile used to build the project inside a container. It uses the Makefile commands to run the app.
  • .pre-commit-config.yaml: pre-commit hooks configuration file
  • pyproject.toml: contains the pytest, ruff & other configurations.
  • src/api/log_config.py and src/main_backend.py: uvicorn (fastapi) logging configuration.
  • src/utils.py: logger (using logguru) and settings using pydantic. the frontend.
  • .github/workflows/**.yml: GitHub actions configuration files.
  • .gitlab-ci.yml: Gitlab CI configuration files.
  • .gitignore: contains the files to ignore in the project.

Tree:


├── .env.example # example of the .env file
├── .env # contains the environment variables
├── Dockerfile # the dockerfile used to build the project inside a container. It uses the Makefile commands to run the app.
├── docker-compose.yml # docker-compose configuration file (used to run the frontend and backend in docker)
├── Makefile # contains the commands to run the app (like running the frontend, tests, installing packages, docker...)
├── assets
├── pyproject.toml # uv, dependencies, pytest, ruff & other configurations for the package
├── uv.lock # uv lock file
├── .pre-commit-config.yaml # pre-commit hooks configuration file
├── .gitignore # contains the files to ignore in the project
├── .github
│   ├── dependabot.yml # dependabot configuration file
│   └── workflows # GitHub actions configuration files
│       └── test-deploy.yaml
├── mkdocs.yml # mkdocs configuration file
├── scripts
│   └── gen_doc_stubs.py # mkdocs : generate documentation stubs
├── src
│   ├── api
│   ├── evaluation
│   ├── main_backend.py
│   ├── main_frontend.py
│   ├── ml
│   ├── settings.py
│   └── utils.py # logger (using logguru) and settings using pydantic.
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── README.md
├── LICENSE
└── tests

1.1. Local Prerequisites

  • Ubuntu 22.04 or MacOS
  • git clone the repository
  • UV & Python 3.11 (will be installed by the Makefile)
  • Create a .env file (take a look at the .env.example file)

1.2 ⚙️ Steps for Installation (Users)

App (AI, FastAPI, Streamlit)

You can run the app in a docker container or locally.

Docker:

  • The docker-compose.yml file is used to run the app in a docker container. It will install the following services: frontend, backend and ollama. Your can comment out ollama if you don't need it.
  • The docker-compose.yml will use the .env.example.docker file to configure the environment variables. Per default, it uses ollama docker container.
  • Run this command : make docker-compose then go to http://localhost:8501

Local :

  1. To install the app, run make install-prod.
  2. Choose one of the following options:
  3. Local model: we use Ollama and litellm to run local models. The default model is qwen2.5:0.5b which is a very lightweight model but can be changed.
    • Create a .env file (You can copy and paste the .env.example file with cp .env.example .env)
    • Install Ollama (for openai) make install-ollama
    • Download the model, run make download-ollama-model. It will download the model present in the OLLAMA_MODEL_NAME var in the .env file (default is qwen2.5:0.5b).
    • Run ollama to emulate openai : make run-ollama
    • Run make test-ollama. You should see an output with a response.
    • Discuss with the model : make chat-ollama
  4. Cloud model:

    • Create/update the .env file (You can copy and paste the .env.example file with cp .env.example .env)
    • Follow the litellm naming convention.
  5. Run make test-inference-llm to check if your LLM responds.

  6. Run the app:
  7. To run the app with Streamlit (and without fastapi), run make run-frontend
  8. To run the app with both Streamlit and FastAPI, run make run-app

1.3 ⚙️ Steps for Installation (Contributors and maintainers)

Check the CONTRIBUTING.md file for more information.

2. Contributing

Check the CONTRIBUTING.md file for more information.