Skip to content

Utils

check_llm_as_a_judge_client()

Check the LLM as a judge client by sending a message to the model.

Uses Langchain OpenAIChat ou Langchain AzureChatas the LLM client

Source code in src/utils.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def check_llm_as_a_judge_client():
    """Check the LLM as a judge client by sending a message to the model.

    Uses Langchain OpenAIChat ou Langchain AzureChatas the LLM client
    """
    try:
        llmaaj_chat_client, llmaaj_client_embedding = get_llm_as_a_judge_client()

        messages = [
            (
                "system",
                "You are a helpful assistant that translates English to French. Translate the user sentence.",
            ),
            ("human", "I love programming."),
        ]
        ai_msg = llmaaj_chat_client.invoke(messages)
        logger.info(
            f"\nEvaluation environment variables are: \n{pretty_repr(settings.get_eval_env_vars())}\n"
            f"\nmodel response: {ai_msg.content}"
        )

    except Exception as e:
        logger.error(
            f"Error in check_llm_as_a_judge_client:"
            f"\nevaluation environment variables are: {pretty_repr(settings.get_eval_env_vars())}"
        )
        raise e

check_llm_client()

Check the LLM client by sending a message to the model.

Uses OpenAI/AzureOpenAI as the LLM client

Source code in src/utils.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def check_llm_client():
    """Check the LLM client by sending a message to the model.

    Uses OpenAI/AzureOpenAI as the LLM client
    """
    client, model_name = get_llm_client()
    try:
        chat_completion = client.chat.completions.create(
            messages=[
                {
                    "role": "user",
                    "content": "Hi",
                }
            ],
            model=model_name,
        )
        logger.info(chat_completion)

        logger.info(
            f"\nActive environment variables are: \n{pretty_repr(settings.get_active_env_vars())}\n"
            f"\nmodel response: {chat_completion.choices[0].message.content}"
        )
    except Exception as e:
        logger.error(
            f"Error in check_llm_client:"
            f"\nActive environment variables are: {pretty_repr(settings.get_active_env_vars())}"
        )
        raise e

get_llm_as_a_judge_client()

Initializes and returns a LLM as a judge client based on the configured provider.

Depending on the value of settings.LLMAAJ_PROVIDER, this function will initialize either an OpenAI or AzureOpenAI client and embedding client from Langchain OpenAI library. It loads the client with the appropriate settings and logs the model being used.

If settings.ENABLE_EVALUATION is False, the function will return (None, None) and log a warning.

Returns:

Name Type Description
tuple

A tuple containing - the initialized client and the embedding client (AzureOpenAI and AzureOpenAIEmbeddings or OpenAI and OpenAIEmbeddings) - or (None, None) if evaluation is disabled.

Raises:

Type Description
ValueError

If the configured LLM provider is unsupported.

Source code in src/utils.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def get_llm_as_a_judge_client():
    """Initializes and returns a LLM as a judge client based on the configured provider.

    Depending on the value of `settings.LLMAAJ_PROVIDER`, this function will initialize
    either an OpenAI or AzureOpenAI client and embedding client from Langchain OpenAI library. It loads the client with
    the appropriate settings and logs the model being used.

    If `settings.ENABLE_EVALUATION` is False, the function will return `(None, None)` and log a warning.

    Returns:
        tuple: A tuple containing
            - the initialized client and the embedding client (AzureOpenAI and AzureOpenAIEmbeddings or OpenAI and
            OpenAIEmbeddings)
            - or `(None, None)` if evaluation is disabled.

    Raises:
        ValueError: If the configured LLM provider is unsupported.
    """
    if settings.ENABLE_EVALUATION:
        if settings.LLMAAJ_PROVIDER == ProviderEnum.azure_openai:
            client = AzureChatOpenAI(
                azure_endpoint=settings.LLMAAJ_AZURE_OPENAI_BASE_URL,
                deployment_name=settings.LLMAAJ_AZURE_OPENAI_DEPLOYMENT_NAME,
                openai_api_key=settings.LLMAAJ_AZURE_OPENAI_API_KEY,
                openai_api_version=settings.LLMAAJ_AZURE_OPENAI_API_VERSION,
            )
            embeddings_client = AzureOpenAIEmbeddings(
                azure_endpoint=settings.LLMAAJ_AZURE_OPENAI_BASE_URL,
                model=settings.LLMAAJ_AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME,
                openai_api_key=settings.LLMAAJ_AZURE_OPENAI_API_KEY,
                openai_api_version=settings.LLMAAJ_AZURE_OPENAI_API_VERSION,
            )
            loguru_logger.info(
                f"Loaded LLMAAJ AzureOpenAI client with model: {settings.LLMAAJ_OPENAI_DEPLOYMENT_NAME}"
            )
        elif settings.LLMAAJ_PROVIDER == ProviderEnum.openai:
            client = ChatOpenAI(
                model_name=settings.LLMAAJ_OPENAI_DEPLOYMENT_NAME,
                openai_api_base=settings.LLMAAJ_OPENAI_BASE_URL,
                openai_api_key=settings.LLMAAJ_OPENAI_API_KEY,
            )
            embeddings_client = OpenAIEmbeddings(
                model=settings.LLMAAJ_OPENAI_EMBEDDING_DEPLOYMENT_NAME,
                openai_api_base=settings.LLMAAJ_OPENAI_BASE_URL,
                openai_api_key=settings.LLMAAJ_OPENAI_API_KEY,
            )
            loguru_logger.info(
                f"Loaded LLMAAJ OpenAI client with model: {settings.LLMAAJ_OPENAI_DEPLOYMENT_NAME}"
            )

        else:
            raise ValueError(f"Unsupported LLM provider: {settings.LLMAAJ_PROVIDER}")

        return (
            client,
            embeddings_client,
        )
    else:
        loguru_logger.warning(
            "Evaluation is disabled. Set ENABLE_EVALUATION to True to activate it."
        )
        return None, None

get_llm_client()

Initializes and returns a language model client based on the configured provider.

Depending on the value of settings.LLM_PROVIDER, this function will initialize either an OpenAI or AzureOpenAI client from OpenAI library. It loads the client with the appropriate settings and logs the model being used.

Returns:

Name Type Description
tuple tuple[object, str]

A tuple containing the initialized client and the model name.

Raises:

Type Description
ValueError

If the configured LLM provider is unsupported.

Source code in src/utils.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def get_llm_client() -> tuple[object, str]:
    """Initializes and returns a language model client based on the configured provider.

    Depending on the value of `settings.LLM_PROVIDER`, this function will initialize
    either an OpenAI or AzureOpenAI client from OpenAI library. It loads the client with the appropriate
    settings and logs the model being used.

    Returns:
        tuple: A tuple containing the initialized client and the model name.

    Raises:
        ValueError: If the configured LLM provider is unsupported.
    """
    if settings.LLM_PROVIDER == ProviderEnum.openai:
        from openai import OpenAI

        client = OpenAI(
            base_url=settings.OPENAI_BASE_URL,
            api_key=settings.OPENAI_API_KEY.get_secret_value(),
        )
        model_name = settings.OPENAI_DEPLOYMENT_NAME
        loguru_logger.info(f"Loaded OpenAI client with model: {model_name}")

    elif settings.LLM_PROVIDER == ProviderEnum.azure_openai:
        from openai import AzureOpenAI

        client = AzureOpenAI(
            api_key=settings.AZURE_OPENAI_API_KEY.get_secret_value(),
            api_version=settings.AZURE_OPENAI_API_VERSION,
            azure_endpoint=settings.AZURE_OPENAI_BASE_URL,
        )
        model_name = settings.AZURE_OPENAI_DEPLOYMENT_NAME
        loguru_logger.info(f"Loaded AzureOpenAI client with model: {model_name}")

    else:
        raise ValueError(f"Unsupported LLM provider: {settings.LLM_PROVIDER}")

    return client, model_name

initialize()

Initialize the settings, logger, and search client.

Reads the environment variables from the .env file defined in the Settings class.

Returns:

Type Description

settings

loguru_logger

search_client

Source code in src/utils.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def initialize():
    """Initialize the settings, logger, and search client.

    Reads the environment variables from the .env file defined in the Settings class.

    Returns:
        settings
        loguru_logger
        search_client
    """
    settings = Settings()
    loguru_logger.remove()

    if settings.DEV_MODE:
        loguru_logger.add(sys.stderr, level="TRACE")
    else:
        loguru_logger.add(sys.stderr, level="INFO")

    search_client = None
    if settings.ENABLE_AZURE_SEARCH:
        search_client = SearchClient(
            settings.AZURE_SEARCH_SERVICE_ENDPOINT,
            settings.AZURE_SEARCH_INDEX_NAME,
            AzureKeyCredential(settings.AZURE_SEARCH_API_KEY),
        )

    return settings, loguru_logger, search_client